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Se l f - s imi la r  flow within a jet domain as well as se l f - s imi la r  flow induced by jets in the 
surrounding medium are  analyzed. 

Exper imental  data presented in [1-3], as well as resul ts  of studies conducted by the author on special 
appara tus ,  show that submerged jets issuing f rom radial ly slit nozzles  formed by two coaxial cones do not, 
by far ,  always take the shape of hollow conical je ts .  For  example, in the case of propagation in an infinite 
space, a hollow conical jet is formed for half .angles  greater  than 60-65 ~ at the nozzle exit.  For  l esse r  
cone angles, a jet at  the nozzle output closes to form a closed zone of circulation cur ren t s .  A flow of the 
hollow conical jet type is general ly never observed in the case of jet flow from a nozzle mounted in a wall, 
which is important  in pract ice ,  but either a closing jet or a jet spreading along the wall bounding the s t ream 
is rea l ized .  

Conditions for propagation of laminar and turbulent hollow conical radial ly  slit untwisted jets with a 
constant cone angle along the jet, for which jet equilibrium holds in a direction perpendicular  to the main 
jet, are  analyzed tn this paper .  The analysis  is conducted for jets escaping from infinitesimal sources  
and, therefore,  re fers  to rea l  jets sufficiently remote  f rom the nozzle sect ions.  

Let an incompressible  fluid jet escape f rom a nozzle formed by two infinitesimal funnels, one of 
which is imbedded in the other, and be propagated in the space bounded by a conical surface with a half-  
angle 3, and filled with the same fluid. Let us select  the spherical  coordinates R, | e with polar axis 
along the axis of jet symmet ry  and origin at the point of jet emergence  (Fig, 1). 

Let us f i r s t  consider a laminar jet.  To do this, let us turn to the ease,  clarified by Slezktn [4], of 
exact  integration of the motion equation of the steady ax i symmet r ic  viscous incompressible  fluid, c o r r e s -  
ponding to the flow from a point pulsed source .  In this case, the solution for the s t ream function $ is 
sought in the form 

= vR[ (t0). (1) 

Here c0=cos~ and the s t ream function ts introduced in such a way that 

U __-- _ _ 1  O~,  V : 1 O~ 
R' sin O OO R sin (9 OR 

Using the substitution 

(2) 

f = - 2  ( l  - +~) d l n r  
de 

permi ts  reducing the problem to integrating a linear second-order  equation for the function F:  

a~F ] Bo + Bx(o+ B~O~F= O. 
d~o ~ 2 (1 "+~)2 (3) 

The form of the pulse source can be made specific and the solution can be made to match the boundary 
conditions by an appropriate selection of the constants B 0, B l, and 132. In order  to obtain the solution for 
a hollow conical jet, let  us assume that the values of the constants 130, B l, and 132 are  connected by 
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F ig .  I. D i a g r a m  of a conica l  r a d i a l l y  s l i t  je t .  

F ig .  2.  Dependence  of the s e l f - s i m i l a r  je t  ha l f - ang le  on the p a r a m e t e r  
a fo r  7 =90o (| deg, and a d i m e n s i o n l e s s ) .  

1 b 2 
B o = B  ~ -  B , =  1 - -  - - ,  

2 2 - .  (4) 

as  in the case  of the fan jet  examined  in [5]. T h e r e f o r e ,  one cons tant ,  b,  whose  value is d e t e r m i n e d  f r o m  
the condit ion of c onse rva t i on  of the m o m e n t u m  flux, will  en t e r  into the so lu t ion .  

Le t  us  note that  the ha l f -ang le  of the je t  00, d e t e r m i n e d  by absence  of a m e r i d i a n  ve loc i ty  V on the 
r a y  |174 does  not v a r y  a long  the je t  because  of s e l f - s i m i l a r i t y  of the solut ion (1), Hence ,  the c a s e s  00-< 
90 ~ and | < 7 a r e  c o n s i d e r e d .  For  a |176 jet  ha l f - ang le ,  the solution (1) should go ove r  into the s o l u -  
tion for  the fan jet  obtained in [5]. 

Taking  accoun t  of  (4), Eq .  (3) is wr i t t en  as  

d~F 1 - -  b 2 F = O .  
do) 2 + 4(1+r (5) 

P a r t i c u l a r  solut ions  of (5) a r e  

J (l--b) 

F1 = (1 + (o) I -  {,+b} , F2 = (1 -t- r T 

then 

f(~) = (l - - ~ )  [ - -  1+ b c ~  §  
l Co + (1 + ~op J ' 

where  C o is a cons tan t  dependent  on the boundary  condi t ions .  

Le t  us  f i r s t  examine  the flow domain  for  | | and let us  wr i te  the boundary  condi t ions  

f = O  for  0}-- 1, f = O  for o=o~o=cosOo. 

To comply  with (7) it is n e c e s s a r y  that  

(6) 

(7) 

h + 1 
co = (1 + ~o)b b - - 1  

We obtain the solut ion in the domain  |  O0 by r e p l a c i n g  (w-- ~0) in (6) by --(~ --  ~0). Consequent ly ,  
we wil l  h a v e  

C0 - -  (i - -  co + 2coop 
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I t  follows f r o m  (8) that f = 0  for w=2wo -,- 1, and by rep lac ing  the ze ro  s t r e a m  sur face  obtained by an 
impe rmeab le  wall,  i . e . ,  without taking account  of the effect  of fluid pa r t i c l e s  adher ing to the wall su r face ,  
we obtain the re la t ionship  between the jet  ha l f ,angle  @0 andthe ha l f -angle  of the conical sur face  bounding 
the space in which the jet  is propagated ,  

cos ? ----- 2C0S 0 o - - ! ,  (9) 

which is needed for the exis tence  of a s e l f - s i m i l a r  solution. 

Rep lacemen t  o[ the physical ly  c o r r e c t  condition of adhesion of a v iscous  fluid to a wall surface  in the 
boundary condition f r o m  the theory o[ an ideal fluid should not essen t ia l ly  affect  the r e su l t  of a solution in 
the case  of a jet  with a sufficiently la rge  Reynolds number ,  just  a s . o c c u r s  in the p rob lem of a je t  being 
propagated within a cone along its  axis  [5]. 

In pa r t i cu la r ,  condition (9) r equ i r e s  the value 00=90 ~ (fan jet) for  the case  of an infinite space (T =180~ 
and the value @0=60 ~ for  the case  of a semi- inf ln i te  space (3, =90~ 

F u r t h e r m o r e ,  let  us  examine  a turbulent  je t .  The flow outside the turbulent  region will be considered 
potent ial .  Le t  us wri te  the Reynolds equations in a spher ica l  coordinate  sy s t em taking account of axial  s y m -  
m e t r y  and s ta t ionar i ty  of the ave rage  flow and neglect ing t e r m s  with molecu la r  v iscosi ty:  

u ~  v o u  v ~ I op l o (R~ < - - u  ~ > ) 

oR + R -  oo  R = t, oR + I~ - - ~  oR 

1 0 <--V~> "+" (--Vfl> 
+ - -  ( ( --UV > sin O) 

R sin 0 O0 R 

_ _  UV u OV + V OV + = 

OR R ao R 

1 O<--v 2>,+ <--uv,~ + <--v~>--<--~> ergO, (II) 
+ - R  ao R R 

0 (R~U sin O) 0 OR + - ~  (RV sin O) = 0. (12) 

1 Op ~- 1 0 

pR ao ' R - ~  OR (R2 < - u v  > ) 

(lO) 

In addition to the continuity equation, the re la t ionship  

OUp 0 (RV~) _ 0 (18) 
ao OR 

is sat isf ied in the potential  flow reg ion .  

Let  us  seek  the solution for  the s t r e a m  function ~b, introduced analogously to (2), in s e l f - s l m i l a r  
fo rm within the turbulent  domain: 

, = A t(o), �9 

where A is a .constant  along the jet  which depends on the je t  momen tum.  
veloci ty a r e  wri t ten in t e r m s  of the function f as 

:4 A 
u = - - f , v = -  I. 

Rein O R sin O (15) 

Here  and hencefor th ,  the p r ime  denotes different iat ion.  

By vir tue of the assumpt ion  about s e l f - s im i l a r i t y ,  

<--uv> = A~g~ 
Rz ' 

< _v~ > A~e~(e) 
R~ ' 

p--poo 

P 

< - - u  2.> _ A2g, (0) 
R~ 

�9 R~ 

A~O (e) 
R~ 

(14) 

The projec t ions  of the ave rage  

(16) 
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Let us henceforth assume that ( - -v  2) ~ (--w 2) by analogy with plane jets [6]. 

Substituting (15) and (16) into (11), we will have 

- f -  - -  g~ - -  go" 

Integrat ing the relat ionship obtained a c r o s s  the jet while taking ~nto account  that g~ vanishes on the jet 
boundaries ,  we obtain 

O, 
1 ' f "- / 2 

O1 

where ~ < O 2. The expression (17) is the equilibrium condition of a turbulent jet in the meridian direct ion.  
This condition can be obtained only on thebas i s  of an unstmplified sys tem of Reynolds equations in the boun- 
d a r y - l a y e r  a ssumptions.  

For  the potential domain in which the flow is also se l f - s imi la r ,  there follows f rom (!3) that 

C 

R (18) 

where the constant C> 0 f rom physical  considerat ions .  Substituting (18) into the continuity equation (12), 
we find 

": D_ZCcosO 
Vv --  R sin O " (19) 

The constants of integration D and C are determined from the boundary conditions separa te ly  for the 
domains | _<_ | and @ _ ,~. 

By virtue of axial s y m m e t r y  of the flow Vp =0 for | and f rom the condition of impenetrabil i ty of 
the cone surface Vp = 0 for @ =y, then 

D i = C~ cos a i, (20) 

where,  for brevi ty ,  we have introduced (i =1, 2) oq = 0 ,  a 2 = ~  , .  

The condition for continuity of the project ions of the velocity V on the jet boundaries requ i res  that 

C, (cos ~ ,  - -  cos O,) _ ~ f ( 0 3 ,  
R sin O i R sin O, 

the re fore ,  

C~ = - -  A f  (O~) ," (21) 
(cos % - -  cos O,) 

@ (Oi)= R * (Pi - -  P| R z (Up 2 -I- V,)o___oi F (O~) 1 _~ . (22) 
A2p = - -  A*p - -  2 s in  20----~ (cos ~ ,  - -  cos O,) * 

Substituting (22) into (17), we obtain the condition for je t  equil ibrium in the mer id ian  direction as 

ez 

P (ol) F (o,) - I godO. 
2 (1 - -  cos O~p 2 (cos ~,-- cos O~)* . (23) 

Let  us seek the function f(@) in the turbulent domain under the usual boundary- layer  assumptions for 
an i sobar ic  jet.  Under these assumptions  (10) becomes  

aU V a u  1 a 
U OR 4- - ~  - ~  = R sin O OO ( ( mug > sin 0). (24) 

Let us take as the boundary conditions for  which we will solve (24): 

OU 0 U ~ O  f_or: O = O i ,  - ~ - =  , V=O- fd i  0 ~ 0  o. (25) 
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Let us note that the radial  velocity on the jet  boundaries is not general ly zero but is determined by 
(18) and (21). However, the quantity Up is of the same order as the meridian velocity V i on the jet boun- 
dar ies ,  i . e . ,  is a negligibly small  quantity as compared with the maximal  radial  velocity in the jet .  

To determine the quantity (--uv),  let us take the hypothesis of a constant mixing path 1 on a surface 
of constant radius ,  where l ~ R .  In this case we can write 

we obtain 

OU OU 
<-uo> = ~  o6-1 - ~ - !  " 

Substituting (15) and (26) into (24), we will have 

]' ( rr 
u [ (  s i l O ) '  I ( s i l o  )' I sinO + \sinO ] 

Integrating (27) once and assuming on the basis  of (25) that 

( fsiTO)" O a n d / ~ = O f ~ 1 7 6  

(26) 

(27) 

o},,, s sin - -  - -  ~ =0. 
is (28) 

Let us represent  @---| + (--1)iatP, where a =~4~,, and let us rewri te  (28) as 

f" --  (-- l)~f'a ctg [00 + (-- l)~acPl =--V/D 7" (29) 

for the domain @ _ | by using the substitution f - - - - f .  The sign before the square root in the right side of 
(29) is selected f rom physical considerations about the nature of the profile f' ((p). 

According to (25), the boundary conditions for the function f(r are the following 

(30) 

(31) 

f = O  for  q)=O, f ' = O  for (P =qh. 

Moreover,  by using the indeterminacy of the constant A up to this t ime, we assume 

f ' = l  for  ~0=0. 

By analogy with plane jets [7], it can be expected that a<< 1, then approximately 

a ctg [O o + (--1)ia(p] ~ a ctgO 0 = a. (32) 

It should be noted that the t e rms  in (10) discarded under the boundary layer  assumption contain the factor 
a2. 

Taking account of (32), Eq. (29) becomes 

f" - (-i), ~f' =-(~. (33) 

The solution of (33) for c~ =0 with the boundary conditions (30), (31) is presented in [7] and co r r e s -  
ponds to a turbulent jet issuing f rom an infinitely long narrow slot.  

Analogously to [7], let us introduce the new variable z =lnf(q$, then (33) goes over into the following 
equation for z (~p): 

(35) 

z" + (z'p-- (--1)~az' = - - ( V  

Using the notation z' =y2, we obtain an equation with separable variables 2y' +y3 _ (_  1)i~y = _  1, 
whose solution is written as 

1 {In (y--13i)' 613, arctg 2y§ } 
q~=const-- [3~--  (--1)' a] Iy~'+g,y-~--(--1)'al - V 3 ~ _ ( _ 1 ) , 4 =  ] / 3 ~ - ( - 1 ) , 4 ~  ' 

where fit is the real  root of the equation 
y3__ (__ 1)~ay + 1 = O. 
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B e c a u s e  a <<1 for  n o t - t o o - s m a l l  angles  | it can be a s s u m e d  tha t  

~i ~ - -  [1 ,'-- ( - -  l) I 0,333a] 

and by  expanding (34) in a power  s e r i e s  i n ~  we will have the fol lowing to  f i r s t - o r d e r  a c c u r a c y :  

[ 4 2 y - - 1  2 h i  2y___~" + ~ arctg =_ ----- t o (y) - -  (--  1) ~ 0,333a t o (y) § ya _{_ 1 I / 3  1 / 3 V 3  

H e r e  t0(Y ) is the solut ion (3) as  a ~ 0 [7] and is de t e rmined  by the fo l lowing e x p r e s s i o n :  

[ 2 -1 ] r~ 1 In (g-i- 1.t 2 6 arctg . 
to (y) ~rg  3 ~f--  y + 1 I/3- 1/5- J 

Since y = 0 for  f '  = O, it then fol lows f r o m  (36) tha t  

(36) 

(37) 

4~ 
% = 3 V-----~ [1 @ ( -  1) / 0:333ct]. (38) 

The solut ion (34) is not  sui table  n e a r  ~p=0. I t  can be obtained that  

z' = y2 ~ 1__ + (__ l ) ia  - 0:400(p~/2 ' z = lntp + (--1)~ aq~--Or266q~3/'~ (39) 
(p 

fo r  smal l  va lues  of r by  the method  e luc ida ted  in [7]. 

In  combina t ion  with (39), the e x p r e s s i o n  (36) p e r m i t s  f inding the value of f((p) on the je t  bounda r i e s :  

[ (%) : 0r [1 + (--1) ~ 0.522a]. (40) 

Le t  u s  eva lua te  the in tegra l  in the equal i ty  (23). It  fo l lows f r o m  (26) and (29) tha t  to f i r s t - o r d e r  a c -  
c u r a c y  

g o  = - -  ( - -  1) i [1 - -  ( - -  l )  i 2acp] ( /2) ,  ( s in  0 0 )  -2 .  

Then to the s a m e  a c c u r a c y  

S godO = 00)-2 it- - 1 ] = (s n 00)-  [e (%) --  Z + 5,604 j (41) 
Ol 0 

The funct ion f0(~p) and the value of r c o r r e s p o n d  to  (37) [7], 

Subs t i tu t ing  (38), (40), (41) into the je t  equ i l ib r ium condit ion (23), we obtain the r e l a t i onsh ip  be tween  
the conica l  su r f a c e  ha l f - ang le  and the je t  ha l f - ang le  which is n e c e s s a r y  for  the s e l f - s i m i l a r  solut ion 

(1 - -  1.044actgOo) sin~ Oo (I ~- 1.044actgOo) sin20o 
. . . . .  7.032actg 0 o (42) 

[1 - -  cos (0 o - -  2.412a)] 2 [cos 7 - -  cos (0o ~- 2412a)]2 
to  the s a m e  a c c u r a c y .  

The quant i ty  a e n t e r s  as  a p a r a m e t e r  into the r e l a t i onsh ip  obtained between ~/ and | 

Le t  u s  examine  the c a s e  7 =90~ in m o r e  de ta i l .  R e p r e s e n t e d  in F i g .  2 is a curve  c h a r a c t e r i z i n g  
the change in the angle  | a s  a funct ion of the value of the p a r a m e t e r  a .  I t  is  seen that  an i n c r e a s e  in a 
c o r r e s p o n d i n g  to a r i s e  in the deg ree  of tu rbu lence  in the je t  will  cause  a d e c r e a s e  in the quant i ty  @0. 

E x p e r i m e n t s  show that  the equ i l i b r ium of a hollow conica l  je t  is not  s table  in the case  7 = 90 ~ In this 
connec t ion ,  the je t  c o n s i d e r e d  is a q u a s i s t a t i o n a r y  model  of a r e a l  je t  in the init ial  ins tan t  of e s c a p e .  It  
can  be a s s u m e d  that  j e t s  with a ha l f - ang le  l e s s  than | in sec t ions  suf f ic ien t ly  r e m o t e  f r o m  the nozz le  at  this  
t ime ,  will  be c losed ,  while o the rwise  a je t  s p r e a d i n g  a long  the wall will  be r e a l i z e d .  

In conc lus ion ,  let  us  note  that  at  s h o r t  r a n g e s  f r o m  the nozz le ,  i . e . ,  in the n o n - s e l f - s i m i l a r  f low 
domain ,  s o m e  i n c r e a s e  in the jet  hal f*angle  will  occu r ,  hence ,  the c r i t i c a l  angle of a conical  r ad i a l l y  sl i t  
nozz le  s e p a r a t i n g  the case  of a c los ing  jet  and a je t  s p r e a d i n g  a long  the wall  t u rns  out to be somewha t  l e s s  
than the angle  80- Thus ,  a c c o r d i n g  to [2], the c r i t i ca l  angle is c lose  to 50 ~ for  a nozz le  with the r a t i o  28 /  
d = 0 . 1 7 ,  where  s is the s lo t  width and d is the outer  d i a m e t e r  of the nozz le  exi t  s ec t ion .  
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N O T A T I O N  

a, empirical constant for a turbulent jet; A, constant determined by the turbulent jet momentum; b, 
constant associated with the laminar jet momentum; B 0, BI, :B 2, C, Co, C i, DI, constants of integration; 
l, mixing path length; p, pressure; p~, pressure in the space into which the jet emerges; R, | e, spheri- 
cal coordinate system; U, V, W, velocity components along the R, | e axes in the turbulent domain, aver- 
aged with respect to the time; u, v, w, pulsating velocity components: Up, Vp, velocity components in the 
potential domain; ~, small parameter; ~, half-angle of a conical surface; | jet half-angle; ~ ,  ~2, an- 
gles corresponding to the turbulent domain boundaries; ~, empirical constant; v, coefficient of kinematic 
fluid viscosity; p, fluid density; $, stream function; [=1, 2, domain with |174 and domain with | @0, 
respectively; < >, sign of averaging with respect to time. 
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